Lecture 4, 10/05/12

William Holmes

• Compute the traffic flow

• The sum of the cars entering and leaving each intersection must be 0!

A: $x_4 + 610 - 450 - x_1 = 0$ B: $x_1 + 400 - 640 - x_2 = 0$ C: $x_2 + 600 - x_3 = 0$ D: $x_3 - 520 - x_4 = 0$

• The sum of the cars entering and leaving each intersection must be 0!

A:
$$-x_1 + x_4 = -160$$

B: $x_1 - x_2 = 240$
C: $x_2 - x_3 = -600$
D: $x_3 - x_4 = 520$

 4 unknowns and 4 pieces of information (equations). So it is likely (but not guaranteed) there will be one unique

• Row reduce and solve.

Row Echelon Form

Reduced Row Echelon Form

Matrix equation method

- An alternative method for solving systems of equations.
- Rewrite the problem as an equation of sorts for which we can develop an arithmetic to solve the problem.

$$A \cdot x = b$$

To do this...

- We will first describe how to reformulate the linear system.
- Then we will develop a new kind of arithmetic (i.e. multiplication, addition, division, and more) to deal this reformulation.

Terminology

- A *matrix* is a rectangular array of numbers or symbols arranged in rows or columns.
- A <u>vector</u> is a matrix with either 1 row or one column.
 - If it has a single row, it's called a <u>row</u>
 <u>vector.</u>
 - If it has a single column, it is called a <u>column vector.</u>

Examples

- A vector is really just a special case of a matrix.
 - Row vector is a I x n matrix.
 - Column vector is a m x I matrix.

Goal

• Given a system of equations, we want to reformulate the problem as

•
$$A \cdot x = b$$

• Then we can say
$$x = \frac{b}{A}$$
 after suitably defining division.

Vector form of a linear equation.

• Any linear equation can be rewritten as a vector equation.

Notation and Conventions

- A is referred to as the coefficient matrix.
- $\vec{\Box}$ is a notation indicating a vector
- \vec{x} is called the vector of unknowns
- \vec{b} is called the constant vector

Define what we mean by multiplication $A \cdot \vec{x}$

Definition of Multiply

• Continued on board.

Important Points about Matrix Multiplication

- I. Not all matrices can be multiplied!
- 2. Sometimes $A \cdot B$ makes sense but $B \cdot A$ does not!
- 3. Even if $A \cdot B$ and $B \cdot A$ both make sense, usually $A \cdot B \neq B \cdot A$