Lecture 4, 10/05/I2
 William Holmes

Linear System Example

- Compute the traffic flow

Linear System Example

- The sum of the cars entering and leaving each intersection must be 0 !

Linear System Example

$$
\begin{aligned}
& \mathrm{A}: \\
& \mathrm{B}: x_{4}+610-450-x_{1}=0 \\
& \mathrm{C}: \\
& \mathrm{D}:
\end{aligned} \quad x_{2}+600-640-x_{2}=0
$$

- The sum of the cars entering and leaving each intersection must be 0 !

Linear System Example

$$
\begin{array}{lr}
\mathrm{A}: & -x_{1}+x_{4}=-160 \\
\mathrm{~B}: & x_{1}-x_{2}=240 \\
\mathrm{C}: & x_{2}-x_{3}=-600 \\
\mathrm{D}: & x_{3}-x_{4}=520
\end{array}
$$

- 4 unknowns and 4 pieces of information (equations). So it is likely (but not guaranteed) there will be one unique

Linear System Example

- Row reduce and solve.

Linear system example

Matrix equation method

- An alternative method for solving systems of equations.
- Rewrite the problem as an equation of sorts for which we can develop an arithmetic to solve the problem.

$$
A \cdot x=b
$$

To do this...

- We will first describe how to reformulate the linear system.
- Then we will develop a new kind of arithmetic (i.e. multiplication, addition, division, and more) to deal this reformulation.

Terminology

- A matrix is a rectangular array of numbers or symbols arranged in rows or columns.
- A vector is a matrix with either I row or one column.
- If it has a single row, it's called a row vector.
- If it has a single column, it is called a column vector.

Examples

$$
\left.\begin{array}{cccc}
& \text { Matrix } & \begin{array}{c}
\text { Column } \\
\text { vector }
\end{array} & \begin{array}{c}
\text { Row } \\
\text { vector }
\end{array} \\
{\left[\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]} & {\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]}
\end{array} \begin{array}{cccc}
{\left[\begin{array}{ccc}
-1 & 0 & 0
\end{array} 1\right.}
\end{array}\right]
$$

- A vector is really just a special case of a matrix.
- Row vector is a $I \times n$ matrix.
- Column vector is a $\mathrm{m} \times \mathrm{I}$ matrix.

Goal

- Given a system of equations, we want to reformulate the problem as
- $A \cdot x=b$
$\begin{aligned} & \text { - Then we can say } \\ & \text { defining division. }\end{aligned} \quad x=\frac{b}{A}$ after suitably

Vector form of a linear equation.

- Any linear equation can be rewritten as a vector equation.

$$
\begin{gathered}
-x_{1}+3 x_{2}+4 x_{3}=5 \\
\\
\\
{\left[\begin{array}{lll}
-1 & 3 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=5} \\
A
\end{gathered} \begin{aligned}
& \vec{x}
\end{aligned} \vec{b}
$$

Notation and Conventions

- A - is referred to as the coefficient matrix.
- $\vec{\square}$ - is a notation indicating a vector
- \vec{x} - is called the vector of unknowns
- \vec{b} - is called the constant vector

Define what we mean by multiplication
 $$
A \cdot \vec{x}
$$

Definition of Multiply

- Continued on board.

$$
\left[\begin{array}{lll}
-1 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$\begin{array}{ll}\stackrel{\digamma}{\bullet} \\ \stackrel{\omega}{\bullet} & {\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]}\end{array}$

$$
-1 x_{1}+3 x_{2}+4 x_{3}
$$

Important Points about Matrix Multiplication

I. Not all matrices can be multiplied!
2. Sometimes $A \cdot B$ makes sense but $B \cdot A$ does not!
3. Even if $A \cdot B$ and $B \cdot A$ both make sense, usually $A \cdot B \neq B \cdot A$

